EXCESS ENTHALPIES OF SOME N-ALKANALS WITH BENZENE, TETRACHLOROMETHANE AND N-CHLOROALKANES

B. Marongiu

DIPARTIMENTO DI SCIENZE CHIMICHE, VIA OSPEDALE 72, 09100 CAGLIARI, ITALY

A Tian-Calvet-type calorimeter has been used to determine molar excess enthalpies at 298.15 K as a function of concentration for the following binary mixtures: ethanal, propanal, butanal or pentanal + 1-chloropropane, 1-chlorobutane, 1-chloropentane and 1-chlorohexane.

These data are examined on the basis of a quasi-chemical theory using group-surface interactions.

We recently investigated the thermodynamic properties and molecular interactions of *n*-alkanal $CH_3(CH_2)_{k-2}(CHO (F_k)$ (with k = 2,3,4,5) + n-alkane mixtures [1]. These mixtures were regarded as possessing two types of groups or surfaces: type *a*, aliphatic (CH_3 — or — CH_2 — groups) and type *f*, formyl (—CHOgroup). We applied the quasi chemical group-contribution theory in the surfaceinteraction version [2] and determined the interchange energy coefficients $C_{af,l}$ (l=1,2).

If the *n*-alkanes are replaced by other solvents, the number of surface types and, consequently, the number of interchange parameters are increased.

For a systematic study the *n*-alkanes should be replaced by other homogeneous, i.e. one-surface type solvents. The most typical, in the order of increasing "activity", are cyclohexane, benzene and tetrachloromethane. Cyclohexane being the most *n*-alkane-like solvent, we devoted the first study to *n*-alkanal+ cyclohexane mixtures [3].

The data are examined on the basis of DISQUAC, a very simple extension of the quasi-chemical group contribution theory previously used [1]. We have now decided to extend the investigation to other solvents, such as benzene, tetra-chloromethane and n-chloroalkanes.

We decided to measure H^{E} in a systematic way for 24 binary mixtures of *n*-alkanal + benzene (C₆H₆), tetrachloromethane (CCl₄) or *n*-chloroalkane of general formula CH₃(CH₂)_{*n*-1}Cl (*n* = 3,4,5,6).

Experimental

Materials

The source, purification and purity control of the aldehydes were the same as described in [1]. The benzene, tetrachloromethane and *n*-chloroalkanes used Fluka AG, extrapure reagent grade for spectroscopy were employed without further purification.

In order to avoid oxidation, a dry-box with flowing nitrogen was always used for any kind of manipulation.

Table 1 Values of the coefficients a_i of Eq. (1) and standard deviation $\sigma(H^E)$, Eq. (2) of the experimental molar excess enthalpies, H^E , for $CH_3(CH_2)_{k-2}$ — $CHO(F_k)$ (1)+ C_6H_6 or CCl_4 or $CH_3(CH_2)_{n-1}$ —Cl(2) mixtures at 298.15 K (k and n are the number of C atom in the *n*-alkanal and in the chloroalkane respectively

F_k	<i>n</i> -alkanal	n	<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	$\sigma(H^{\mathcal{E}})/\mathbf{J}\cdot\mathrm{mol}$
$\overline{F_2}$	ethanal	3	3063	489	135	45		1.5
-		4	3424	750	159	-131	269	2.1
		5	3784	915	441	- 56		1.2
		6	4174	1043	682	319	-137	1.5
		C ₆ H ₆	926	- 568	- 6	-125	257	1.7
		CCl ₄	1284	- 349	- 66	73	42	1.7
<i>F</i> ₃	propanal	3	2366	197	- 201	- 196	663	1.8
		4	2579	252	95	- 289	412	1.6
		5	2894	239	265	- 547	- 277	2.3
		6	3188	164	215	92	481	3.9
		C ₆ H ₆	359	-422	145	- 34		1.1
		CCl₄	457	- 294	102	-136	- 76	1.1
F ₄	butanal	3	1964	- 77	- 128	32	396	2.2
		4	2112	- 193	- 48	425	117	4.2
		5	2329	-218	-281	57	291	5.4
		6	2529	249	- 550	159	785	3.0
		C ₆ H ₆	-210	-176	265			1.5
		CCl ₄	7	- 247	86	13	16	0.7
F ₅	pentanal	3	1718	-238	83	- 33	-187	1.3
		4	1779	-119	- 45	117		1.8
		5	1924	12	-115	- 99	319	2.3
		6	2078	137	125	- 12	- 317	1.5
		C ₆ H ₆	- 327	- 89	87	- 42	48	0.7
		CCl ₄	- 223	- 113	63	37	—	0.9

J. Thermal Anal. 30, 1985

Procedure

Enthalpies of mixing were measured at 298.15 ± 0.10 K using a Tian–Calvet calorimeter tilted manually. The batch mixing cell and the experimental procedure have been described elsewhere [4].

The calorimeter was calibrated by means of the Joule effect, and the calibration was repeated after each experiment. A check measurement for benzene + cyclohexane [5] indicates that the precision of the results is $\sim 1.5\%$.

The accuracy is probably better than 2%. The direct experimental H_{exp}^{E} values were fitted to the smoothing equation

$$H^{E} = x_{1} x_{2} \sum_{i=0}^{N-1} a_{i} (x_{1} - x_{2})^{i}$$
(1)

where x_1 is the mole fraction of *n*-alkanal and x_2 that of benzene or tetrachloromethane or *n*-chloroalkane.

Values of the coefficients a_i and the standard deviations $\sigma(H^E)$, given by

$$\sigma(H^{E}) = \left[\Sigma (H^{E} - H^{E}_{exp})^{2} / (N - n) \right]^{\frac{1}{2}}$$
(2)

(where N is the number of experimental points and n the number of coefficients a_i), were determined by least-squares analysis and are reported in Table 1.

Discussion

As no molar excess Gibbs energy, G^E , data for *n*-alkanal+benzene, tetrachloromethane or *n*-chloroalkane mixtures are available in the literature, it is not possible to examine the excess enthalpy data, H^E , on the basis of a quasi-chemical theory (QUAC) or an extension of this theory (DISQUAC). Therefore, merely a qualitative interpretation of the H^E data for the investigated mixtures is possible at the moment.

n-Alkanal+benzene or tetrachloromethane mixtures

As shown in Figs 1 and 2, the excess enthalpies decrease when the number of alkyl groups k, in the *n*-alkanal, increases, assuming negative values for $k \ge 4$. This confirms the weakening of the dipole-dipole interactions (CHO—CHO) previously observed with *n*-alkane or cyclohexane as solvent [1, 3], and also demonstrates the existence of specific intermolecular interactions between the polar group (CHO) and the π -electrons of benzene (*n*- π interactions), or between CHO and the polar group (—Cl) of tetrachloromethane.

Fig. 1 Molar excess enthalpies, H^E, at 298.15 K, of n-alkanal(1) + benzene(2) mixtures vs. x₁, the mole fraction of n-alkanal. Experimental results (F₂, ●, ethanal; F₃, +, propanal; F₄, ○, butanal; F₅, ■, pentanal)

Fig. 2 Molar excess enthalpies, H^{L} , at 298.15 K, of *n*-alkanal(1) + tetrachloromethane(2) mixtures *vs.* x_1 , the mole fraction of *n*-alkanal. Experimental results (F_2 , \oplus , ethanal; F_3 , +, propanal; F_4 , \bigcirc , butanal; F_5 , \blacksquare , pentanal)

The occurrence of oriented interactions between the alkanal molecules is also confirmed in the case of butanal (F_4) by the S-shaped curve of H^E vs. x_1 , which is positive at low alkanal concentrations and negative at high ones.

As regards pentanal $+C_6H_6$ or CCl_4 mixtures, the CHO-solvent interactions predominate in the entire concentration range, always giving rise to exothermic mixtures.

J. Thermal Anal. 30, 1985

n-Alkanal + n-chloroalkane mixtures

The variation of H^E for *n*-alkanal with the chain length *n* of the chloroalkane is quite similar to the variation observed in the case of *n*-alkanals with *n*-alkane [1]. The excess enthalpies increase with increase of the alkyl chain length of the chloroalkane, as shown in Fig. 3.

Preliminary calculation for n-alkanal + n-chloroalkane systems have been performed on the basis of the DISQUAC model [3]. In agreement with previous

Fig. 3 Molar excess enthalpies, H^E (298.15' $x_1 = 0.5$) of *n*-alkanal(1)+*n*-chloroalkane mixtures *vs. k*, the number of carbon atoms in the *n*-alkanal: full lines, predicted values; points, experimental H^E results (\bullet , +*n*-chloropropane; \bigcirc , +*n*-chlorobutane; \triangle , +*n*-chloropentane; \blacksquare , +*n*-chlorobexane)

Table 2 Interchange energy coefficients, $C_{st, 1}$ (Gibbs energy) and $C_{st, 2}$ (enthalpy) for *n*-
alkanal(1)+1-chloroalkane(2) mixtures

l	$C_{cf, l}^{\text{DIS}}$	$C_{ac,l}^{\text{QUAC}}$	$C_{af,l}^{\text{QUAC}}$
1	2.200	2.455	3.900
I	3.400	3.850	5.930

results [2, 3], the contact *ac* (aliphatic/chloro) and *af* (aliphatic/carbonyl) was treated quasi-chemically (z=4) with no dispersive contribution. The chloro/carbonyl contact, *cf*, was regarded as dispersive, with no quasi-chemical contribution, because of a probable compensation of the quasi-chemical interactions of the two polar groups, chloro (--Cl) and carbonyl (--CHO).

The geometrical parameters and the interchange coefficients $C_{af,l}$ and $C_{ac,l}$ were the same as defined previously [2, 3]. We adjusted the coefficients $C_{cf,l}$ in the usual manner. All the values are listed in Table 2.

The results, which are necessarily only approximate due to the lack of G^E data for these mixtures, indicate that it is impossible at present to make a general statement

on the applicability of the DISQUAC model to polar + non-polar or polar + polar systems. All we can say now is that DISQUAC seems quite suitable for describing polar + cyclohexane systems [3] and polar + polar systems, assuming dispersive $(z_{st} = \infty)$ polar-polar contacts.

References

- 1 I. Ferino, B. Marongiu, V. Solinas, S. Torrazza and H. V. Kehiaian; Fluid Phase Eq., 12 (1983) 125-142.
- 2 H. V. Kehiaian, J. P. E. Grolier and G. C. Benson, J. Chim. Phys., 75 (1978) 1031-1048.
- 3 H. V. Kehiaian and B. Marongiu, Fluid Phase Eq., 21 (1985) 197.
- 4 D. Bares, M. Soulie and J. Metzger, J. Chim. Phys., 70 (1973) 1531–1539.
- 5 K. N. Marsh, Int. DATA Ser., Ser. A, Sel. Data Mixtures, 1 (1973) 2.

Zusammenfassung — Ein Kalorimeter des Tian-Calvet-Typs wurde zur Bestimmung der molaren Überschußenthalpien der im folgenden angeführten binären Gemische bei 298,15 K in Abhängigkeit von der Konzentration verwendet: Ethanal, Propanal, Butanal und Pentanal mit 1-Chlorpropan, 1-Chlorbutan, 1-Chlorpentan bzw. 1-Chlorhexan. Diese Daten wurden an Hand einer quasi-chemischen, Gruppen-Oberflächen-Wechselwirkungen involvierenden Theorie geprüft.

Резюме — Калориметр типа Тиан-Кальвет был использован для определения при 298,15 К молярных избыточных энтальпий в зависимости от концентрации смесей этаналь, пропаналь, бутаналь или пентаналь + 1-хлорпропан, 1-хлорбутан, 1-хлорпентап и 1-хлоргексан. Анализ полученных данных проведен на основе квази-химической теории, используя взаимодействия типа группа — поверхность.